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Abstract 
In heterogeneous and dynamic environments, efficient execution of parallel computations can reEuire mappings of tasks to 
processors with performance that is both irregular (due to heterogeneity) and timeKvarying (due to dynamicity). While 
adaptive domain decomposition techniEues have been used to address heterogeneous resource capabilities, temporal 
variations in those capabilities have seldom been considered. We propose a conservative scheduling policy that uses 
information about expected future variance in resource capabilities to produce more efficient data mapping decisions. We 
first present techniEues, based on time series predictors that we developed in previous work, for predicting CPU load at 
some future time point, average CPU load for some future time interval, and variation of CPU load over some future time 
interval. We then present a family of stochastic scheduling algorithms that exploit such predictions of future availability 
and variability when making data mapping decisions. Finally, we describe experiments in which we apply our techniEues to 
an astrophysics application. The results of these experiments demonstrate that conservative scheduling can produce 
execution times that are significantly faster and less variable than other techniEues.  

1 Introduction 
Clusters of PCs or workstations have become a common platform for parallel computing. Applications on 

these platforms must coordinate the execution of concurrent tasks on nodes, whose performance is both irregular 
and time varying due to the presence of other applications sharing the resources. The effective use of this 
platform, however, reEuires new approaches to resource scheduling and application mapping capable of dealing 
with the heterogeneous and dynamic nature of such systems. 

We present here a conservative scheduling techniEue that uses predicted mean and variance CPU capacity 
information to make data mapping decisions. The basic idea is straightforward: we seek to allocate more work to 
systems that we expect to deliver the most computation, where this is defined from the viewpoint of the 
application S a cluster may be homogenous in machine type, but Euite heterogeneous in performance due to 
different underlying load on the various resources. Also, we often see that a resource with a larger capacity will 
also show a higher variance in performance, and therefore will more strongly influence the execution time of an 
application than a machine with less variance. Our conservative scheduling techniEue uses a conservative load 
prediction, eEual to a prediction of the resource capacity over the future time interval of the application added to 
the predicted variance of the machine, in order to determine the proper data mapping, as opposed to just using a 
prediction of capacity as many other approaches. This techniEue addresses both the dynamic and heterogeneous 
nature of shared resources.  

We proceed in two steps. First, we extend our previous time series predictor work ?31B to obtain three types 
of prediction: CPU load at some future time point, average CPU load for some future time interval, and 
variation of CPU load over some future time interval. Then, we extend our previously defined stochastic 
scheduling algorithms ?23B to use the predicted means and variances. The result is an approach that exploits 
predicted variance in performance information to define a timeKbalancing scheduling strategy that improves 
application execution time.  

We evaluate the effectiveness of this conservative scheduling techniEue by applying it to a particular class 
of applications, namely loosely synchronous, iterative, dataKparallel computations. Such applications are 
characterized by a single set of operations that is repeated many times, with a loose synchronization step 
between iterations ?14,15B. We present experiments conducted using Cactus ?2K4B, a loosely synchronous 
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iterative 1computational astrophysics application. These results demonstrate that we can achieve significant 
improvements in both mean execution time and the variance of those execution times over multiple runs in 
heterogeneous, dynamic environments. 

The rest of this paper is organized as follows. Section 2 introduces related work. Section 3 describes the 
problem. Section 4 describes our three predictors and Section 5 introduces our conservative scheduling method. 
Section 6 presents our experimental results. In Section 7, we summarize and briefly discuss future work. 

2 Related Work 
Many researchers ?6,7,12,17K19,27B have explored the use of time balancing or load balancing models to 

reduce application execution time in heterogeneous environments. However, their work has typically assumed 
that resource performance is constant or slowly changing, and thus does not take later variance into account. For 
example, Dail ?7B and Liu et al. ?19B use the 1^KsecondKahead predicted CPU information provided by the 
Network Weather Service (NWS) ?29,3^B to guide scheduling decisions. While this oneKstepKahead prediction at 
a time point is often a good estimate for the next 1^ seconds, it is less effective in predicting the available CPU 
the application will encounter during a longer execution.  

Dinda et. al. implemented a user level Real Time Scheduler Advisor (RTSA) ?9B , which uses multiKstepK
ahead CPU load prediction provided by a Running Time Advisor (RTA) (RTA)?8B to instruct workload 
allocation. While their scheduler uses variation information of the resource availability, the focus is on assisting 
client applications to meet deadlines for applications running on a single host, not loadKbalancing between 
resources. 

Yang and Casanova ?32,33B developed a multiKround scheduling algorithm for divisible workloads. They use 
system performance information collected at scheduling time to decide a workload allocation scheme. If the 
system status changes dramatically during execution of the application, the scheduler is switched to a greedy 
algorithm that simply assigns more work to idle computers. However, this strategy is limited to application 
whose subtask are independent each other. While for the loosely synchronous application we concerned in this 
work, there are communications among subtasks.   

Dome ?5B and Mars ?16B support dynamic workload balancing through migration and make the application 
adaptive to the dynamic environment at runtime. But the implementation of such adaptive strategies can be 
complex and is not feasible for all applications. 

Schopf and Berman ?23B defined a stochastic scheduling policy based on time balancing for dataKparallel 
applications. The basic idea of this work is to allocate less work to machines with higher load variance. Their 
work uses the mean and variation of the history information to instruct the scheduling process. But their 
algorithm assumes that the associated stochastic data can be described by a normal distribution (because of 
constraints on the formulas used), which they admit is not always a valid assumption ?1^,21B. 

In our approach, we define a timeKbalancing scheduling strategy based on the prediction of the next interval 
of time and a prediction of the variance (standard deviation) to counteract the problems seen with a oneKstepK
ahead approach, and achieve faster and less variable application execution time.  

3 Problem Statement 
Efficient execution in a distributed system can reEuire, in the general case, mechanisms for the discovery of 

available resources, the selection of an applicationKappropriate subset of those resources, and the mapping of 
data or tasks onto selected resources. In this article, we assume that the target set of resources is fixed and focus 
on the data mapping problem for data parallel applications.  

We do not assume that the resources in this resource set have identical or even fixed capabilities, or have 
identical underlying CPU loads. Wihin this context, our goal is to achieve data assignments that balance load 
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between processors so that each processor finishes executing at roughly the same time, thereby minimizing 
execution time. This form of load balancing is also known as time balancing. 

Time balancing is generally accomplished by solving a set of eEuations, such as the following, to determine 
the data assignments: 

                                                                                                   (1) ji,      )(D E)(D E jjii !"

             # " Totali DD
where 

$% Di is the amount of data assigned to processor ig 
$% DTotal is the total amount of data for the applicationg 
$% Ei(Di) is the execution time of task on processor i, and is generally parameterized by the amount of data 

on that processor, Di. It can be calculated using a performance model of the application. For example, a 
simple application might have the following performance model: 

                 Ei(Di) h Comm(Di)i(futureNWCapacity) j Comp(Di) i(futureCPUCapacity) 
Note that the performance of an application can be affected by the future capacity of both the network 

bandwidth behavior and the CPU availability. 
In order to proceed, we need mechanisms for: (a) obtaining some measure of future capability and (b) 

translating this measure into an effective resource capability that is then used to guide data mapping. As we 
discuss below, two measures of future resource capability are important: the expected value and the expected 
variance in that value. One approach to obtaining these two measures would be to negotiate a service level 
agreement (SLA) with the resource owner under which they would contract to provide the specified capability 
?13B. Or, we could use observed historical data to generate a prediction for future behavior 
?8,22,24,26,28,3^,31B. We focus in this article on the latter approach and present techniEues for predicting the 
future capability. However, we emphasize that our results on topic (b) above are also applicable in the SLAK
negotiation case.  

4 Predicting Load and Variance 
The Network Weather Service (NWS) ?29,3^B provides predicted CPU information one measurement 

(generally about 1^ seconds) ahead based on a time series of earlier CPU load information. Some previous 
scheduling work ?7,19B uses this oneKstepKahead predicted CPU information as the future CPU capability in the 
performance model. However, what is really needed for better data distribution and scheduling is an estimate of 
the average CPU load an application will experience during execution, rather than the CPU information at a 
single future point in time. One measurement is simply not enough data for most applications. 

In loosely synchronous iterative applications, tasks communicate between iterations, and the next iteration 
on a given resource cannot begin until the communication phase to that resource has been finished, as shown in 
Figure 1. Thus, a slower machine will not only take longer to run its own task, but will also increase the 
execution time of the other tasks with which it communicateskand ultimately the execution time of the entire 
job. In Figure 1, the data was evenly divided among the resources, but M1 has a large variance in execution 
time. If M1 were running in isolation it would complete the overall work in the same amount of time as M2 or 
M3. However, because of its large variation, it is slow to communicate to M2 at the end of the second iteration, 
which in turn causes the delay of the task on M2 at the third computation step (in black), which causes the delay 
of the task on M3 at the fourth computation step. Thus, the total job is delayed. It is this wave of delayed 
behavior caused by variance in the resource capability that we seek to avoid with our scheduling approach.  
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Given the preceding history data measured at a constantKwidth time interval, our mixed tendencyKbased time 
series predictor uses the following algorithm, where VT is the measured value at the Tth measurement and PTj1 is 
the predicted value for measurement value VTj1. 

Figure 1: The interrelated influence among tasks of synchronous iterative application. 
In our previous work ?31B, we developed a one step ahead CPU load predictor. We now describe how this 

time series predictor can be extended to obtain three types of predicted CPU load information: the next step 
predicted CPU load at a future time point (Section 4.1)g the average interval CPU load for some future time 
interval (Section 4.2)g and the variation of CPU load over some future time interval (Section 4.3). 

4.1 One-Step-Ahead CPU Load Prediction 
The tendencyKbased time series predictor developed in our previous work ?31B can provide oneKstepKahead 

CPU load prediction based on history CPU load information. This predictor has been demonstrated to be more 
accurate than other predictors for CPU load data The algorithm predicts the next value according to the tendency 
of the time series change assuming that if the current value increases, the next value will also increase and that if 
the current value decreases, the next value will also decrease.  

  ** Determine Tendency 
        if 334T-# - 4T 6786  

   Tendency9:Increase:>    
      else if 334  - 4 6786  T T-#
             Tendency9:Decrease:>  

        if 3Tendency9:Increase:6 then 
               ATB# 9 4T B IncrementConstant, 
               IncrementConstant adaptation process  
        else if 3Tendency9:Decrease:6 then 
               ATB# 9 4T C 4TDDecrementFactor, 
               DecrementFactor adaptation process  

We found that a mixedKvariation (that is, different behavior for the increment from that of the decrement) 
experimentally performed best. The IncrementConstant is set initially to ^.1, and the DecrementFactor is set to 
^.^1. At each time step, we measure the real data (VTj1) and calculate the difference between the current 
measured value and the last measured value (VT) to determine the real increment (decrement) we should have 
used in the last prediction in order to get the actual value. We adapt the value of the increment (decrement) 
value accordingly and use the adapted IncrementConstant (or DecrementFactor) to predict the next data point. 

Using this time series predictor to predict the CPU load in the next step, we treat the measured preceding 
CPU load time series as the input to the predictor. The predictorns output is the predicted CPU load at the next 
step: 

!redictorc)* c,*...cn pn0)
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where Chc1,c2ocn is the preceding CPU load time series measured at constantKwidth time interval and pnj1 
is the predicted value for measurement value cnj1. 

4.2 Interval Load Prediction 
Instead of predicting one step ahead, we want to be able to predict the CPU load over the time interval 

during which an application will run. Since the CPU load time series exhibits a high degree of selfKsimilarity 
?1^B, averaging values over successively larger time scales will not produce time series that are dramatically 
smoother. Thus, to calculate the predicted average CPU load an application will encounter during its execution, 
we need to first aggregate the original CPU load time series into an interval CPU load time series, then run 
predictors on this new interval time series to estimate its future value.  

Aggregation, as defined here, consists of converting the original CPU load time series into an interval CPU 
load time series by combining successive data over a nonKoverlapping larger time scale. The aggregation degree 
M is the number of original data points used to calculate the average value over the time interval. This value is 
determined by the resolution of the original time series and the execution time of the applications, and need be 
only approximate. 

For example, the resolution of the original time series is ^.1 Hz, or measured every 1^ seconds. If the 
estimated application execution time is about 1^^ seconds, the aggregation degree M can be calculated by 

                  M h execution time of application i freEuency of original time series         (2) 
                      h 1^^ i ^.1 
                      h 1^. 

Hence, the aggregation degree is 1^. In other words, 1^ data points from the original time series are needed 
to calculate one aggregated value over 1^^ seconds. The process of aggregation is: 

()*++,,,++*(-./01),,,(-.0.)*(-.0*(-.01)*,,,(-.)*(-

23

C4

54 23.)*2) ,,, 34 & 'Mn
  

Where  
     Chc1,c2,ocn : the original preceding CPU load time series measured at constantKwidth time intervalg 
     M: the aggregation degree, calculated by EEuation 2g 
     Aha1,a2,o ak  ( kh & Mn ' ): the interval CPU load time series, calculated by EEuation 3: 

                     M
Mj

jMikni ca # "
(())"

..1
i)1(           ih1..k                                        (3) 

Each value in the interval CPU load time series paiq is the average CPU load over the time interval that is 
approximately eEual to the application execution time. 

After creating the aggregated time series, the second step of our interval load prediction involves using the 
oneKstepKahead predictor on the aggregated time series to predict the mean interval CPU load. 

!redictorc)* c,*...cn pa20)344re4ation a)* a,*...a2

 
The output paKj1 is the predicted value of akj1, which is approximately eEual to the average CPU load the 

application will encounter during execution.  
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4.3 Load Variance Prediction 
To predict the variation of CPU load, for which we use standard deviation, during the execution of an 

application, we need to calculate the standard deviation time series using the original CPU load time series C 
and the interval CPU load time series A (defined in Section 4.2): 

()*+,,,++*(-./01)*,,,*(-.0.)*(-.0*(-.01)*,,,(-.)*(-

23

C4

54 23.)*2) ,,,

3464+++++7)+++++++++++,,,+++++73.)*++++++++++++++++++73

1 1 1

& 'Mn  
Assuming the original CPU load time series is Chc1,c2,ocn, the interval load time series is Aha1,a2,oak( 

kh & Mn ' ), and an aggregation degree of M, we can calculate the standard deviation CPU load time series 
Shs1,s2,osk: 

                     M
Mj

ijMMikni acs # "
(()) )"

..1
2

)1( )(             ih1..k                          (4) 

Each value in standard deviation time series Nsiq is the average difference between the CPU load and the 
mean CPU load over the interval. 

To predict the standard deviation of the CPU load, we use the oneKstepKahead predictor on the standard 
deviation time series. The output pskj1 will be the predicted value of skj1, or the predicted CPU load variation for 
the next time interval. 

89':;(&"9()*+(/*,,,(- $7+31)5<<9'<2&;"- 2)*+2/*,,,23
7:,

(2=(%=2&;"- 7)*7/*,,,73

 

5 Application Scheduling  
Our goal is to improve data mapping in order to reduce total application execution time despite resource 

contention. To this end, we use the timeKbalancing scheduling algorithm described in Section 3, parameterized 
with an estimate of future resource capability. We also use the three CPU load predictors introduced above: the 
next step predicted CPU load at a future time point (Section 4.1)g the average CPU load for some future time 
interval (Section 4.2)g and the variation of CPU load over some future time interval (Section 4.3).  

5.1 Cactus Application 
We applied our scheduling algorithms in the context of Cactus, a simulation of a 3D scalar field produced 

by two orbiting astrophysical sources. The solution is found by finite differencing a hyperbolic partial 
differential eEuation for the scalar field. This application decomposes the 3D scalar field over processors and 
places an overlap region on each processor. For each time step, each processor updates its local grid point and 
then synchronizes the boundary values. It is an iterative, loosely synchronous application. We use a oneK
dimensional decomposition to partition the workload in our experiments. 

This application is loosely synchronous, as described in Section 4. The full performance model for Cactus is 
described in ?19B, but in summary it is: 

          Ei(Di) h startsup timej(DiiCompi (^) j  Commi (^)) i slowdown(effective CPU load).  

Compi (0) and commi (0), the computation time of per data point and communication time of the Cactus 
application in the absence of contention, can be calculated by formulas described in ?2^B. We incur a startup 
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time when initiating computation on multiple processors in a workstation cluster that was experimentally 
measured and fixed. The function slowdown(effective CPU load), which represents the contention effect on the 
execution time of the application, can be calculated by using the  formula described in ?19B: 

The performance of the application is greatly influenced by the actual CPU performance achieved in the 
presence of contention from other competing applications. The communication time is less significant when 
running on a local area network, but for wideKarea network experiments this factor would also be parameterized 
by a capacity measure.  

Thus our problem is to determine the value of CPU load to be used to evaluate the slowdown caused by 
contention. We call this value the effective CPU load and eEuate it to the average CPU load the application will 
experience during its execution. 

5.2 Scheduling Approaches 
As shown in Figure 1, variations in CPU load during task execution can also influence the execution time of 

the job because of interrelationships among tasks. We define a conservative scheduling techniEue that always 
allocates less work to highly varying machines. For the purpose of comparison, we define the effective CPU 
load in a variety of ways, each giving us a slightly different scheduling policy. We define five policies to 
compare in the experimental section: 

(1) One Step Scheduling (OSS): Use the oneKstepKahead prediction of the CPU load, as described in Section 
4.1, for the effective CPU load. 

(2) Predicted Mean Interval Scheduling (PMIS): Use the interval load prediction, described in Section 4.2, 
for the effective CPU load. 

(3) Conservative Scheduling (CS): Use the conservative load prediction, eEual to the interval load 
prediction (defined in 4.2) added to a measure of the predicted variance (defined in section 4.3) for the 
effective CPU load. That is, Effective CPU loadh pakj1 j pskj1. 

(4) History Mean Scheduling (HMS): Use the mean of the history CPU load for the 5 minutes preceding the 
application start time for the value for effective CPU load. This approximates the estimates used in 
several common scheduling approaches ?25,27B.  

(5) History Conservative Scheduling (HCS): Use the conservative estimate CPU load defined by adding the 
mean and variance of the history CPU load collected for 5 minutes preceding the application run as the 
effective CPU load. This approximates the prediction and algorithms used in ?23B. 

6 Conservative Scheduling Experiments 
To validate our work, we conducted experiments on workstation clusters at University of Illinois at 

ChampaignKUrbana (UIUC), University of California, San Deigo (UCSD), and Argonne National Laboratoryns 
Chiba City system.  

6.1 Experimental Methodology 
We compared the execution times of the Cactus application with the five scheduling policies described in 

Section 5: One Step Scheduling (OSS), Predicted Mean Interval Scheduling (PMIS), Conservative Scheduling 
(CS), History Mean Scheduling (HMS), and History Conservative Scheduling (HCS).  

At UIUC, we used a cluster of four Linux machines, each with a 45^ MHz CPUg at UCSD, we used a 
cluster of six Linux machines, four machines with a 1733 MHz CPU, one with a 7^^ MHz CPU, and one with a 
7^5 MHz CPU. At Chiba City, we used a much larger cluster, which includes 32 Linux machines, each with a 
5^^MHz CPU. All machines are dedicated during experiments.  

To evaluate the different scheduling polices under identical workloads, we used a load trace playback tool 
?11B to generate a background workload from a trace of the CPU load that results in realistic and repeatable CPU 
contention behavior. We chose thirtyKtwo load time series available from ?1B. These are all traces of actual 
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machines, which we characterize by their mean and standard deviation. We used 24^ minutes of each trace, at a 
granularity of ^.1 Hz. The statistic properties of these CPU load traces are shown in Table 1. Note that even 
though some machines have the same speed, the performance that they deliver to the application varies due to 
the fact that they each experienced different background loads. 

Table 1: The mean and standard deviation of 32 CPU load traces. 
CPU Load Trace Name Machine Name Mean  SD 
LL1 abyss ^.1169 (L) ^.1599 (L) 
LL2 axp6 ^.^639 (L) ^.1^68 (L) 
LL3 axp6 ^.18^3 (L) ^.^944 (L) 
LL4 axp6 ^.^126 (L) ^.^541 (L) 
LL5 axp7 ^.^167 (L) ^.^583 (L) 
LL6 axp7 ^.1631 (L) ^.1^42 (L) 
LL7 axp7 ^.1278 (L) ^.1174 (L) 
LL8 axp7 ^.^615 (L) ^.1^^3 (L) 
LH1 vatos ^.2199 (L) ^.31^1 (H) 
LH2 axp1 ^.1361 (L) ^.2926 (H) 
LH3 axp1 ^.2489 (L) ^.3436 (H) 
LH4 axp1 ^.19^9 (L) ^.2912 (H) 
LH5 axp1 ^.3917 (L) ^.3839 (H) 
LH6 axp2 ^.2298 (L) ^.283^ (H) 
LH7 axp2 ^.1778 (L) ^.2831 (H) 
LH8 axp2 ^.16^1 (L) ^.2996 (H) 
HL1 Mystere 1.8489 (H) ^.1432 (L) 
HL2 pitcairn  1.1884 (H) ^.1221 (L) 
HL3 axp4 1.1112 (H) ^.1289 (L) 
HL4 axp4 1.1797 (H) ^.1241 (L) 
HL5 axp4 1.1^35 (H) ^.1199 (L) 
HL6 axp4 1.1738 (H) ^.1113 (L) 
HL7 axp4 1.^451 (H) ^.^968 (L) 
HL8 axp4 1.1^61 (H) ^.125^ (L) 
HH1 axp^ 1.^725 (H) ^.4793 (H) 
HH2 axp^ 1.^5^3 (H) ^.4552 (H) 
HH3 axp^ 1.^315 (H) ^.4958 (H) 
HH4 axp^ ^.9856 (H) ^.5718 (H) 
HH5 axp1^ 1.1811 (H) ^.31^5 (H) 
HH6 axp1^ 1.2839 (H) ^.3224 (H) 
HH7 axp1^ 1.235^ (H) ^.3258 (H) 
HH8 axp1^ 1.2456 (H) ^.3528 (H) 

6.2 Experimental Results 
Results from six representative experiments are shown in Figures 2S7. A summary of the testbeds and the 

CPU load traces used for the experiments is given in Table 2.  
Table 2: CPU load traces used for every experiment 

Experiments Testbed CPU Load Traces Execution Time 
Figure 2 UIUC LL1, LH1, HL1, HH1 Short (* 1 minute) 
Figure 3 UIUC LL1, LL2, LH1, LH2 Short ( * 1 minute) 
Figure 4 UIUC HL2, HL3, HH1, HH2 Short ( * 1 minute) 
Figure 5 UIUC LH1, LH2, HH1, HH2 Short ( * 1 minute) 
Figure 6 UCSD LL1, LL2, LH1, LH2, HL1, HL2  Short ( * 1 minute) 
Figure 7 UCSD LH1, LH2, HL1, HL2, HH1, HH2 Short ( * 1 minute) 
Figure 8 UCSD LH1, LH2, HL1, HL2, HH1. HH2 Long ( * 1^ minutes) 
Figure 9 Chiba City All 32 load traces Long (* 1^ minutes) 
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Figure 2: Comparison of the History Mean, History Conservative, One-Step, Predicted Mean Interval and 
Conservative Scheduling policies, on the UIUC cluster with two low-variance machines (one with low mean, the 
other with relatively high mean) and two high-variance machines (one with low mean, the other with high mean). 
The application execution time is about 1 minute. 
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Figure 3: Comparison of the History Mean, History Conservative, One-Step, Predicted Mean Interval and 
Conservative Scheduling policies, on the UIUC cluster with two low-variance and two high-variance machines (all 
have low mean). The application execution time is about 1 minute. 
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Figure 4: Comparison of the History Mean, History Conservative, One-Step, Predicted Mean Interval and 
Conservative Scheduling policies, on the UIUC cluster with two low-variance and two high-variance machines (all 
have high mean). The application execution time is about 1 minute. 
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Figure 5: Comparison of the History Mean, History Conservative, One-Step, Predicted Mean Interval, Conservative 
Scheduling policies, on the UIUC cluster with four high variance machines (two with high, two with low mean).  The 
application execution time is about 1 minute. 
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Figure 6: Comparison of the History Mean, History Conservative, One-step, Predicted Mean Interval, Conservative 
Scheduling policies, on the heterogeneous UCSD cluster with four low-variance machines (two with low mean, two 
with high mean) and two high-variances machines (have low mean). The application execution time is about 1 
minute. 
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Figure 7: Comparison of the History Mean, History Conservative, One-step, Predicted Mean Interval, Conservative 
Scheduling policies, on the heterogeneous UCSD cluster with two low-variance machines (have high mean) and four 
high-variances machines (two with low mean, two with high mean). The application execution time is about 1 
minute. 
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Figure 8: Comparison of the History Mean, History Conservative, One-step, Predicted Mean Interval, Conservative 
Scheduling policies, on the heterogeneous UCSD cluster within two low-variance machines (have high mean) and 
four high-variances machines (two with low mean, two with high mean). The application execution time is about 10 
minutes. 
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Figure 9 Comparison of the History Mean, History Conservative, One-step, Predicted Mean Interval, Conservative 
Scheduling policies, on the Chiba City cluster within sixteen low-variance machines (eight with high mean, eight 
with low mean) and sixteen high-variances machines (eight with low mean, eight with high mean). The application 
execution time is about 10 minutes. 

 
To compare these policies, we used three metrics: an absolute comparison of run times, a relative measure 

of achievement and the statistical analysis to show the improvement of our strategy. The first metric involves an 
average mean and an average standard deviation for the set of runtimes of each scheduling policy as a whole, as 
shown in Table 3. This metric gives a rough valuation on the  performance of each scheduling policy over a 
given interval of time. We can see from Table 3 that over the entire run, the Conservative Scheduling policy 
exhibited 2tS7t less overall execution time than History Mean and History Conservative Scheduling policies, 
by using better information prediction, and 1.2tS8t less overall execution time than the One Step and 
Predicted Mean Interval Scheduling policies. We also see that taking variation information into account in the 
scheduling policy results in more predictable application behavior: The History Conservative Scheduling policy 
exhibited 2tS29t less standard deviation of execution time than the History Mean. The Conservative 
Scheduling policy exhibited 1.5tK77t less standard deviation in execution time than the OneKStep Scheduling 
policy and 7tS41t less standard deviation of execution time than the Predicted Mean Interval Scheduling 
policy. 

The second metric we used, Compare, is a relative metric that evaluates how often each run achieves a 
minimal execution time. We consider a scheduling policy to be pbetterq than others if it exhibits a lower 
execution time than another policy on a given run. Five possibilities exist: best (best execution time among the 
five policies), good (better than three policies but worse than one), average (better than two policies and worse 
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than two), poor (better than one policy but worse than three), and worst (worst execution time of all five 
policies).   

Table 3: Average mean and average standard deviation for entire set of runs for each scheduling policy, 
with the best in each experiment shown in boldface. 

HMS HCS OSS PMIS  CS  
Experiment Mean SD Mean SD Mean SD Mean SD Mean SD 
Figure 2 36.23 3.72 36.^9 2.62 37.^2 4.16 35.44 3.15 34.26 2.44 
Figure 3 34.^7 3.1^ 33.29 2.83 33.2^ 2.73 33.^6 3.37 31.94 2.69 
Figure 4 47.76 2.44 48.63 2.22 48.72 2.7^ 47.56 2.4^ 46.99 1.83 
Figure 5 42.28 4.^2 42.87 3.62 42.87 4.24 41.96 4.28 41.26 3.24 
Figure 6 37.95 3.83 37.58 3.02 37.76 3.52 37.63 3.78 36.84 3.12 
Figure 7 58.23 9.^8 55.74 8.12 57.67 7.17 57.^4 8.^2 54.23 6.09 
Figure 8 38^.^^ 6^.1^ 369.11 59.^5 393.7^ 47.78 368.29 54.1^ 363.33 5^.^6 
Figure 9 5^5.66 22.^7 499.28 2^.22 512.1^ 51.92 484.22 14.13 485.79 11.86 

These results are given in Table 4, with the largest value in each case shown in boldface. The results 
indicate that Conservative Scheduling using predicted mean and variation information is more likely to have a 
pbestq or pgoodq execution time than the other approached on both clusters. This fact indicates that taking 
account of the average and variation CPU information during the period of application running in the scheduling 
policy can significantly improve the applicationns performance.  

The third metric involves using TKtest value to show the significance of the improvement of our strategy 
over other strategies. We calculated both paired and unpaired oneKtailed TKtest values for our strategy and each 
other strategies. The results are shown in Table 5 and Table 6 respectively. We can see that most of the TKtest 
values, especially the paired TKtest values, are blow 1^t. These results indicate that the possibility of the 
improvement happening by chance is Euite small. So we can say that our Conservative Scheduling policy 
achieves significant improvements over other four strategies in most cases. 

To summarize our results: independent of the loads, CPU capabilities, the execution time of application and 
number of resources considered on our testbed, the Conservative Scheduling policy based on our tendencyK
based prediction strategy with mixed variation achieved better results than the other policies considered. It was 
both the best policy in more situations under all load conditions on both clusters, and the policy that resulted in 
the shortest execution time and the smallest variation in execution time. 

7 Conclusion and Future Work 
We have proposed a conservative scheduling policy able to achieve efficient execution of dataKparallel 

applications even in heterogeneous and dynamic environments. This policy uses information about the expected 
mean and variance of future resource capabilities to define data mappings appropriate for dynamic resources. 
Intuitively, the use of variance information is appealing because it provides a measure of resource preliabilityq. 
Our results suggest that this intuition is valid.  

Our work comprises two distinct components. First, we show how to obtain predictions of expected mean 
and variance information by extending our earlier work on time series predictors. Then, we show how 
information about expected future mean and variance (as obtained, for example, from our predictions) can be 
used to guide data mapping decisions. In brief, we assign less work to less reliable (higher variance) resources, 
thus protecting ourselves against the larger contending load spikes that we can expect on those systems. We 
apply our prediction techniEues and scheduling policy to a substantial astrophysics application. Our results 
demonstrate that our techniEue can obtain better execution times and more predictable application behavior than 
previous methods that focused on predicted means alone, or that used variances in less effective manner. While 
the performance improvements obtained are modest, they are obtained consistently and with no modifications to 
the application beyond those reEuired to support nonuniform data distributions. 
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We are interested in extending this work to other dynamic system information, such as network status. 
Another direction for further study is a more sophisticated scheduling policy that may better suit other particular 
environments and applications. 

 
Table 4: Summary statistics using !"#$%&' to evaluate five scheduling policies, 

with the largest value in each case shown in boldface 
Experiment Policy Best Good Avg Poor Worst 

HMS 2 2 7 3 6 
HCS 1 4 6 6 3 
OSS 5 5 ^ 2 8 
PMIS 6 2 3 7 2 

Figure 2 

CS 6 7 4 2 1 
HMS 2 2 5 5 6 
HCS 2 3 4 6 5 
OSS 4 2 5 3 6 
PMIS 1 8 3 5 3 

Figure 3 

CS 11 5 3 1 ^ 
HMS 1 3 1 6 9 
HCS 2 1 9 3 5 
OSS 1 2 6 5 6 
PMIS 7 6 3 4 ^ 

Figure 4 

CS 9 8 1 2 ^ 
HMS 1 8 4 1 6 
HCS ^ 3 6 5 6 
OSS 2 3 4 7 4 
PMIS 7 3 4 4 2 

Figure 5 

CS 10 3 2 3 2 
HMS 4 3 5 4 4 
HCS 4 3 7 4 2 
OSS 1 1 4 4 10 

PMIS 1 10 ^ 6 3 

Figure 6 

CS  10 3 4 2 1 
HMS 2 2 5 7 4 
HCS 4 3 6 5 2 
OSS ^ 3 6 5 6 

PMIS 4 8 1 1 6 

Figure 7 

CS 10 4 2 2 2 
HMS 2 3 2 9 4 
HCS 6 3 8 ^ 3 
OSS 3 ^ 2 5 1^ 

PMIS 3 8 4 3 2 

Figure 8 

CS 6 6 4 3 1 
HMS 2 1 5 5 7 
HCS 4 4 2 4 6 
OSS 1 4 6 4 5 

PMIS 8 4 3 5 ^ 

Figure 9 

CS 5 7 4 2 2 
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Table 5: Paired one-tailed T test value for Conservative Scheduling policy and other four policies.  (* means  no 
improvement) 

Experiments  HMS HCS OSS PMIS 
Figure2 ^.25t ^.^9t ^.37t 2.6^t 

   Figure 3 ^.^7t ^.17t ^.11t 1.27t 
Figure 4 u^.^1t u^.^1t u^.^1t 4.3^t 
Figure 5 ^.71t ^.16t 1.^1t 17.76t 
Figure 6 1.83t 6.76t ^.^2t 3.43t 
Figure 7 ^.24t 4.4^t ^.^1t 3.75t 
Figure 8 ^.19t 12.^5t ^.^3t 12.72t 
Figure 9 ^.21t ^.69t 1.41t i 

Table 6: Unpaired one-tailed T test value for conservative scheduling policy and other four policies. (* means no 
improvement) 

Experiments  HMS HCS OSS PMIS 
Figure2 2.79t 1.42t ^.83t 9.83t 

   Figure 3 1.32t 6.6^t 7.77t 12.78t 
Figure 4 ^.65t ^.73t 1.14t 2^.25t 
Figure 5 23.32t 9.51t 1^.9^t 33.6^t 
Figure 6 15.94t 22.57t ^.22t 23.69t 
Figure 7 5.51t 25.48t 5.51t 1^.99t 
Figure 8 18.8^t 39.32t 3.27t 4^.58t 
Figure 9 ^.^5t ^.71t 1.65t i 

Acknowledgments 
We are grateful to Peter Dinda for permitting us to use his load trace play tool, and to our colleagues within 

the GrADS project for providing access to testbed resources. This work was supported in part by the Grid 
Application Development Software (GrADS) project of the NSF Next Generation Software program, under 
Grant No. 9975^2^, and in part by the Mathematical, Information, and Computational Sciences Division 
subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under 
contract WK31K1^9KEngK38. 

References 
?1B . http:eecs.uchicago.eduevlyangeLoad
?2B Allen, G., Benger, W., Goodale, T., Hege, H.KC., Lanfermann, G., Merzky, A., Radke, T., Seidel, E. and Shalf, J., 

Cactus Tools for Grid Applications, Cluster Computing, 4 (2^^1) 179K188. 
?3B Allen, G., Benger, W., Goodale, T., Hege, H.KC., Lanferrmann, G., Merzky, A., Radke, T., Seidel, E. and Shalf, J., 

The Cactus Code: A Problem Solving Environment for the Grid. Proceedings of the Ninth IEEE International 
Symposium on High Performance Distributed Computing (HPDC9), Pittsburgh, 2^^^. 

?4B Allen, G., Goodale, T., Lanfermann, G., Radke, T., Seidel, E., Benger, W., Hege, H.KC., Merzky, A., Masso, J. and 
Shalf, J., Solving Einsteinds EEuations on Supercomputers, IEEE Computer, 32 (1999) 52K59. 

?5B Arabe, J.N.C., Beguelin, A., Loweamp, B., Seligman, E., Starkey, M. and Stephan, P., Dome: Parallel 
Programming in a Heterogeneous MultiKuser Environment. Carnegie Mellon University, School of Computer 
Science, 1995. 

?6B Berman, F., Wolski, R., Figueira, S., Schopf, J. and Shao, G., ApplicationKLevel Scheduling on Distributed 
Heterogeneous Networks. Supercomputing'96, 1996. 

?7B Dail, H.J., A Modular Framework for Adaptive Scheduling in Grid Application Development Environments. 
Computer Science, University of California, California, San Diego, 2^^1. 

?8B Dinda, P.A., Online Prediction of the Running Time of Tasks. Proceedings of the 10th IEEE International 
Symposium on High Performance Distributed Computing (HPDC 2001), San Francisco, CA, 2^^1. 

?9B Dinda, P.A., A PredictionKbased RealKtime Scheduling Advisor. Proceedings of the 16th International Parallel 
and Distributed Processing Symposium (IPDPS 2002), 2^^2. 

 14



?1^B Dinda, P.A. and OdHallaron, D.R., The Statistical Properties of Host Load. The Fourth Workshop on Languages, 
Compilers, and Run-time Systems for Scalable Computers (LCR 98), Pittsburgh, PA, 1998, pp. 319K334. 

?11B Dinda, P.A. and OdHallaron, D.R., Realistic CPU Workloads Through Host Load Trace Playback. Proc. 5th 
Workshop on Languages, Compilers, and Run-time Systems for Scalable Computers (LCR 2000), Vol. Springer 
LNCS 1915, Rochester, NY, 2^^^, pp. 265K28^. 

?12B Figueira, S.M. and Berman, F., Mapping Parallel Applications to Distributed Heterogeneous Systems. University 
of Californian, San Diego, 1996. 

?13B Foster, I. and Kesselman, C., GriPhyNePPDG: Data Grid Architecture, Toolkit, and Roadmap. The GriphyN and 
PPDG Collaborations, 2^^1, pp. 31. 

?14B Fox, G.C., Johnson, M.A., Lyzenga, G.A., Otto, S.W., Salmon, J.K. and Walker, D.W., Solving Problems on 
Concurrent Processors, PrenticeKHall, 1988. 

?15B Fox, G.C., Williams, R.D. and Messina, P.C., Parallel Computing Works, Morgan Kaufmann, 1994, 977 pp. 
?16B Gehring, J. and Reinefeld, A., Mars: A Framework for Minimizing the Job Execution Time in a Metacomputing 

Environment, Future Generation Computer Systems, 12(1) (1996) 87K99. 
?17B Kumar, S., Das, S.K. and Biswas, R., Graph Partitioning for Parallel Applications in Heterogeneous Grid 

Environments. submitted to International Parallel and Distributed Processing Symposium (IPDPS 2002), Florida, 
2^^2. 

?18B Kumar, S., Maulik, U., Bandyopadhyay, S. and Das, S.K., Efficient Task Mapping on Distributed Heterogeneous 
System for Mesh Applications. International workshop on Distributed Computing (IWDC 2001), Calcutta, India, 
2^^1. 

?19B Liu, C., Yang, L., Foster, I. and Angulo, D., Design and Evaluation of a Resource Selection Framework for Grid 
Applications. Proceedings of the 11th IEEE International Symposium on High-Performance Distributed 
Computing (HPDC 11), Edinburgh, Scotland, 2^^2. 

?2^B Ripeanu, M., Iamnitchi, A. and Foster, I., Performance Predictions for a Numerical Relativity Package in Grid 
Environments, International ^ournal of High Performance Computing Applications, 15 (2^^1). 

?21B Schopf, J.M., Performance Prediction and Scheduling for Parallel Applications on MultiKUser Cluster. Department 
of Computer Science and Engineering, University of California San Diego, San Diego, 1998, pp. 247. 

?22B Schopf, J.M., A Practical Methodology for Defining Histograms for Predictions and Scheduling. ParCo'99, 1999. 
?23B Schopf, J.M. and Berman, F., Stochastic Scheduling. SuperComputing'99, Portland, Oregon, 1999. 
?24B Smith, W., Foster, I. and Taylor, V., Predicting Application Run Times Using Historical Information. Proceedings 

of the IPPS/SPDP'98 workshop on ^ob Scheduling Strategies for Parallel Processing, 1998. 
?25B Turgeon, A., Snell, Q. and Clement, M., Application Placement Using Performance Surface. HPDC2000, 

Pittsburgh, Pennsylvania, 2^^^. 
?26B Vazhkudai, S., Schopf, J.M. and Foster, I., Predicting the Performance of Wide Area Data Transfer. 16th Int'l 

Parallel and Distributed Processing Symposium (IPDPS 2002), Fort Lauderdale, Florida, 2^^2. 
?27B Weissman, J.B. and xhao, y., Scheduling Parallel Applications in Distributed Networks, ^ournal of Cluster 

Computing, 1 (1998) 1^9K118. 
?28B Wolski, R., Dynamically Forecasting Network Performance Using the Network Weather Service, ^ournal of 

Cluster Computing (1998). 
?29B Wolski, R., Spring, N. and Hayes, J., The Network Weather Service: A Distributed Resource Performance 

Forecasting Service for Metacomputing, ^ournal of Future Generation Computing Systems (1998) 757K768. 
?3^B Wolski, R., Spring, N. and Hayes, J., Predicting the CPU availability of TimeKshared Unix Systems. Proceedings 

of 8th IEEE High Performance Distributed Computing Conference (HPDC8), Redondo Beach, CA, 1999. 
?31B Yang, L., Foster, I. and Schopf, J.M., Homeostatic and TendencyKbased CPU Load Predictions. International 

Parallel and Distributed Processing Symposium (IPDPS2003), Nice, France, 2^^3. 
?32B Yang, Y. and Casanova, H., RUMR: Robust Scheduling for Divisible Workloads. Proceedings of the 12th IEEE 

Symposium on High Performance and Distributed Computing (HPDC-12), Seattle, 2^^3. 
?33B Yang, Y. and Casanova, H., UMR: A MultiKRound Algorithm for Scheduling Divisible Workloads. Proceedings 

of the International Parallel and Distributed Processing Symposium (IPDPS'03), Nice, France, 2^^3. 
 

 15

http://cs.uchicago.edu/~lyang/Load

